OVERVIEW

The goal of this document is to present the TCS1 control system in a clear and understandable way and to derive the transfer functions to be used in SIMULINK.
This document format combines notes, graphs, plots, graphics, etc. all on one page. It is not a traditional report style format.
The method used to present this material was to:

1) Present a hybrid block diagram of the entire system on one page. The block is not 100% mathematically or functionally correct. It is meant to present the system in an understandable way.
2) Explore each block or group of blocks, understand the function, and derive the transfer function for use in SIMULINK.

 inverted into the block or its output will be inverted in the next block.

TABLE OF CONTENTS

PAGE	BLOCK	DESCRIPTION
1	-	TITLE PAGE (THIS PAGE)
2	-	OVERALL BLOCK DIAGRAM
3	1 \& 2	COMMAND RECTIFIERS, PRE-LOADS, HIGH FREQUENCY TACHOMETER COMPENSATION
4	3	TACHOMETER \& TACHOMETER INPUT BUFFERS
5	4	TACHOMETER SUMMER CIRCUIT
6	5	ACCELERATION LIMITER
7	6	MOTORS \& BULL GEARS
8	6	MOTOR DATASHEET
9	7	COMMAND MAGNITUDE LIMITER (SLEW or OFFSET)
10	8	POWER AMPLIFIER MOTOR DRIVER
11	9	MAIN SUMMING BLOCK (PROPORTIONAL GAIN, INTEGRATOR, SLEW FEED FORWARD)
12	10	INCREMENTAL ENCODER \& FRICTION GEAR
13	11	PROPORTIONAL GAIN
14	12	INTEGRATOR WITH SHORTING AND OFFSET FEED FWD PULSES
15	12	OFFSET FEED FWD PULSE EXPLANATION
16	13	DIGITAL TO ANALOG CONVERTER
17	13	COMPUTER/DIGITALLY GENERATED CONTROL SIGNALS (SLEW, OFFSET, POSITION ERROR)
18	-	UNIT CONVERSIONS (SUMMER VOLTS to RAD/S \& RAD/S to ARCSEC/S)
19	-	APPENDIX: ABSOLUTE POSITION ENCODERS
20	-	APPENDIX: TCS1 BLOCK DIAGRAM CIRCA 1980
21	-	APPENDIX: IRTF 123 - TELESCOPE SERVO CONTROL HA COMPUTER CMD \& MAGNITUDE DETECT
22	-	APPENDIX: IRTF 125 - TELESCOPE SERVO CONTROL HA SEQUENCE CONTROL BOARD
23	-	APPENDIX: IRTF 127 \& 128 - TELESCOPE SERVO CONTROL D/A, JOYSTICK, \& INTEGRATOR
24	-	APPENDIX: IRTF 130 - TELESCOPE SERVO CONTROL TACH SUMMER \& TORQUE CMD
25	-	APPENDIX: IRTF 131 - TELESCOPE SERVO CONTROL DEC TACH SUMMER \& TORQUE CMD

APPENDIX: IRTF 130 - TELESCOPE SERVO CONTROL TACH SUMMER \& TORQUE CMD APPENDIX: IRTF 131 - TELESCOPE SERVO CONTROL DEC TACH SUMMER \& TORQUE CMD

The motors are driven by a current amplifier. The output of the motor has a 144:1 gear ratio to the HA Axis. Since the motor is driven by a current drive amplifier, the equations
B for the torque involve the torque constant of the motor, current, and gear ratio. The back EMF produced by the motor is used as feedback for the amplifier in the amplifier model. The back EMF reduces the maximum current
output of the amplifier. See the amplifier section for more details. See next page for motor datasheet and parameter

Imai measured 1Ω and 1.3Ω across the motors at the junction box with the amplifiers off but still connected on $11 / 2 / 07$. This suggests " A " version of motor

ORIGINAL, Model 12016A

MOTOR TORQUE

Torque $=I K_{T} \cdot$ Gear_Ratio
Torque $=I\left[3.90 \frac{\mathrm{lb} \cdot \mathrm{ft}}{\mathrm{A}}\right] \cdot(144)$
Torque $=I\left[561.6 \frac{\mathrm{lb} \cdot \mathrm{ft}}{\mathrm{A}}\right]$
Torque $=I\left[561.6 \frac{\mathrm{lb} \cdot \mathrm{ft}}{\mathrm{A}}\right] \cdot\left[\frac{1.355817952 \mathrm{~N} \cdot \mathrm{~m}}{\mathrm{lb} \cdot \mathrm{ft}}\right]$
Torque $=I \cdot \frac{761.427 N \cdot m}{A}$

MOTOR IMPEDANCE (@25C

$Z_{\text {motor }}=Z_{L_{-} \text {winding }}+R_{\text {winding }}$
$Z_{\text {motor }}=s(0.008) \Omega+0.97 \Omega$
BACK EMF (used in amplifier section)

$$
\begin{aligned}
& \text { Back_EMF }=\theta_{M} \cdot K_{b} \\
& \text { Back_EMF }=\theta_{M} \cdot 5.30 \frac{\mathrm{~V}}{\mathrm{rad} / \mathrm{s}}
\end{aligned}
$$

SPARE, Model 12016A

$$
\begin{aligned}
& \text { Torque }=I K_{T} \cdot \text { Gear_Ratio } \\
& \text { Torque }=I\left[12.8 \frac{\mathrm{lb} \cdot \mathrm{ft}}{\mathrm{~A}}\right] \cdot(144) \\
& \text { Torque }=I\left[1843.2 \frac{\mathrm{lb} \cdot \mathrm{ft}}{\mathrm{~A}}\right] \\
& \text { Torque }=I\left[1843.2 \frac{\mathrm{lb} \cdot \mathrm{ft}}{\mathrm{~A}}\right] \cdot\left[\frac{1.355817952 \mathrm{~N} \cdot \mathrm{~m}}{\mathrm{lb} \cdot \mathrm{ft}}\right] \\
& \text { Torque }=I \cdot \frac{2499.04 \mathrm{~N} \cdot \mathrm{~m}}{A}
\end{aligned}
$$

MOTOR IMPEDANCE (@25C)

$$
\begin{aligned}
& Z_{\text {motor }}=Z_{L_{-} \text {winding }}+R_{\text {winding }} \\
& Z_{\text {motor }}=s(0.017) \Omega+0.4 .50 \Omega
\end{aligned}
$$

BACK EMF (used in amplifier section)

$$
\begin{aligned}
& \text { Back_EMF }=\theta_{M} \cdot K_{b} \\
& \text { Back_EMF }=\theta_{M} \cdot 17.4 \frac{\mathrm{~V}}{\mathrm{rad} / \mathrm{s}}
\end{aligned}
$$

B This is just a selectable magnitude limiter with a filter.
The "BUF MOTION DISABLE" can be ignored since it is a personnel safety feature, which isn't part of the servo analysis. Also, it can be assumed that EAST and WEST slewing will have equal magnitude limiting.

Testing $11 / 7 / 07$	
Z8A-9 $=160 \mathrm{mV}$	
Z8A-5 $=717 \mathrm{mV}$	(EAST track)
(EAST slew)	
Z7A-5 $=-720 \mathrm{mV}$	(WEST track)
For model, use	
For $+/-150 ~ m V ~$	(WEST slew)
$+/-720 \mathrm{mV}$ for tracking/offset	

4	5

INVERTING Summing AMP with half wave rectifier. Only positive outputs allowed.

Op-amp equation when V cmd is $\leq-5^{*}$ Vrefp: Vout=-Vrefp-0.2*Vcmd

Else, Vout=0.

6
INVERTING summing amp This stage subtracts the exact amount from the command that is required to clip it and keep it within 5^{*} ref voltage . The final result is the inverted value.

INVERTING Summing AMP with half wave rectifier Only negative outputs allowed.

Op-amp equation when V cmd is $\geq-5 \mathrm{~V}$ refn: Vout=-Vrefn-0.2*Vcmd

Else Vout=0.

Digital to analog converter.
Voltage output.
The digital to analog converter gain was lumped into the encoder block. See block \#10.

DEC TRANSFER FUNCTION(S) FOR SIMULINK

$$
\begin{array}{r}
1.22 \mathrm{E}-3 \\
\text { arantization in }
\end{array}
$$

interval

Note: no datasheet was located on the internet. (It's an older obsolete DAC.)

It is known from operation and the above schematic that the DAC uses $+/-15 \mathrm{~V}$ supplies, outputs $+/-10 \mathrm{~V}$, and is 14 bits.

Given this information, the resolution can be calculated as:

$$
\frac{10-(-10) V}{2^{14} b i t s}=1.22 \mathrm{mV} / \mathrm{bit}
$$

This value is used as the quantization interval for the quantization block in Simulink.

In addition, the DAC can only output +/- 10V. A limiter can be placed on the output.

The SIMULINK modeling of this will be much simpler than the large amounts of digital circuitry that were required to create these signals.

SEE BLOCK \#12 for more information on the offset pulses.
("FD FWD EAST" and "FD FWD WEST")
More work needs to done here. As of 11/27/07 two things are unknown:

1) Position error magnitude at which a slew ends
2) Offset pulse characteristics

The model currently uses values that work well in the simulation.

CONVERSION FOR SIMULINK

The tachometer summer circuit has a scaled, averaged, tachometer output in volts. In the SIMULINK simulation, it is convenient to display this in arcsec/sec. See conversion derivation for rad/s to arcsec/s used below. This is the feedback that the control system uses.

In Simulink, some of the outputs will be displayed on a scope. Radians/second are used in the model for radial velocity, but arcsec/sec is what the telescope control displays and uses.
Converting it makes it easier to understand and compare to actual telescope data.

$$
\frac{\text { radians }}{\sec }=\frac{\text { radian }}{\sec } \cdot \frac{180 \mathrm{deg}}{\pi \cdot \text { radian }} \cdot \frac{60 \operatorname{arc} \mathrm{~min}}{\operatorname{deg}} \cdot \frac{60 \operatorname{arcsec}}{\operatorname{arc} \mathrm{~min}}
$$

$$
\frac{\text { radians }}{\mathrm{sec}}=206264.81 \frac{\operatorname{arcsec}}{\mathrm{sec}}
$$

APPENDIX: ABSOLUTE POSITION ENCODERS

The current RA absolute position encoder (APE) is located in the North Pier. It is an inductosyn encoder with one half mounted on the yoke, and the other half mounted to the pier.

A The DEC APE is located in the west arm of the yoke. It is also an induction type encoder (identical to the RA encoder) with one half mounted to the telescope central section, and the other half mounted on the yoke.

Both of the current APEs have a resolution of 0.1 arcsec.

